Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 239-247, 2020.
Article in Chinese | WPRIM | ID: wpr-823938

ABSTRACT

Objective: To evaluate the effect of different extracts of Diospyros lotus leaves in atopic dermatitis Methods: Diospyros lotus leaves were extracted in ethanol and treated with or without hydrochloric acid or α-rhamnosidase to obtain three different extracts-ethanol, acid-hydrolyzed, and enzyme-hydrolyzed leaf extracts of date plum. The myricitrin content in all samples was measured using HPLC analysis. In vitro antioxidant and anti-inflammatory activities of the extracts were determined by measuring DPPH radical scavenging activities and nitric oxide production in RAW264.7 cells, respectively. Seven-week-old male hairless mice were used to evaluate the anti-atopic dermatitis effects of three extracts in vivo. Splenocytes and mast cells were used to further determine the anti-atopic dermatitis effects of the major compound in the ethanol leaf extract. Results: Enzyme-hydrolyzed leaf extract showed significant in vitro antioxidant and anti-inflammatory activities, and attenuated atopic dermatitis-like skin symptoms and clinical signs more significantly than ethanol and acid-hydrolyzed leaf extracts in 1-fluoro-2,4-dinitrobenzene and house dust mite antigen-treated hairless mice. Enzyme-hydrolyzed leaf extract also suppressed the serum level of immunoglobulin E, interleukin (IL)-4, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, thymic stromal lymphopoietin, and thymus and activation-regulated chemokine in mice with atopic dermatitis. Furthermore, histological analysis revealed that enzyme-hydrolyzed leaf extract suppressed the increased epidermal thickness, dermal infiltration of inflammatory cells, and infiltration and degranulation of mast cells more markedly than the other two extracts in atopic dermatitis-like skin lesions. In addition, this extract effectively inhibited the production of IFN-γ, IL-4, and thymus and activation-regulated chemokine compared with the other two extracts in concanavalin A-stimulated splenocytes. Myricitrin, a major compound of enzyme-hydrolyzed leaf extract, suppressed atopic dermatitis biomarkers in stimulated mouse splenocytes and HMC-1 human mast cells.Conclusions: These results suggest that enzyme-hydrolyzed leaf extract might be a potential candidate to treat atopic dermatitis.

2.
J. appl. oral sci ; 18(5): 522-527, Sept.-Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-564189

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the temperature change during low-speed drilling using infrared thermography. MATERIAL AND METHODS: Pig ribs were used to provide cortical bone of a similar quality to human mandible. Heat production by three implant drill systems (two conventional drilling systems and one low-speed drilling system) was evaluated by measuring the bone temperature using infrared thermography. Each system had two different bur sizes. The drill systems used were twist drill (2.0 mm/2.5 mm), which establishes the direction of the implant, and finally a 3.0 mm-pilot drill. Thermal images were recorded using the IRI1001 system (Infrared Integrated Systems Ltd.). Baseline temperature was 31±1ºC. Measurements were repeated 10 times, and a static load of 10 kg was applied while drilling. Data were analyzed using descriptive statistics. Statistical analysis was conducted with two-way ANOVA. RESULTS AND CONCLUSIONS: Mean values (n=10 drill sequences) for maximum recorded temperature (Max TºC), change in temperature (ΔTºC) from baseline were as follows. The changes in temperature (ΔTºC) were 1.57ºC and 2.46ºC for the lowest and the highest values, respectively. Drilling at 50 rpm without irrigation did not produce overheating. There was no significant difference in heat production between the 3 implant drill systems (p>0.05). No implant drill system produced heat exceeding 47ºC, which is the critical temperature for bone necrosis during low-speed drilling. Low-speed drilling without irrigation could be used during implant site preparation.


Subject(s)
Animals , Body Temperature , Osteotomy/instrumentation , Ribs/surgery , Analysis of Variance , Dental Implantation, Endosseous/instrumentation , Dental Implantation, Endosseous/methods , Equipment Design , Models, Animal , Osseointegration , Osteotomy/methods , Swine , Thermography , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL